Steinmetz Motor Controllers

Steinmetz, Inc.

December 22, 2025

SOFTWARE

1 Software Documentation 2
1.1 Getting Started - Software 2
1.1.1 Validate Interfaces e 2

1.1.2 Validate Internal Sensors 2

1.1.3 Write Initial EEPROM values 2
1.1.3.1 Calculating initial Pl gains 3

1.1.4 Validate Position Sensing e 4
1.1.4.1 TuneResolverOffset 4

1.2 State Machine e e 4
1.3 CANProtocol e e 5
1.3.1 TX (Emitted from Motor Controller) 6
1.3.1.1 Summary 6

1.3.1.2 O0xO012 (Resolver) i i e e 7

1.3.1.3 0x016(StateID) 8

1.3.1.4 0xOlc (EEPROM SetResponse) 9

1.3.1.5 0x01d (EEPROM GetResponse) 10

1.3.1.6 0x020 (DQ Currents) v v v v v vt e e e e e e e e 11

1.3.1.7 0x021 (PWMDuty Cycles), 12

1.3.1.8 0x022 (DQPID Integral) 13

1.3.1.9 0x025 (Electrical Angle) 14

1.3.1.10 0x029 (Switching Misc Data) 15

1.3.1.11 0x306 (GPIO State) it 16

1.3.1.12 0x310-0x31B (Temperature Data) 16

1.3.1.13 0x31C (External RTD interface) 17

1.3.1.14 0x320 (Current Sense Phase C) 18

1.3.1.15 0x321 (Current Sense Phase B) 19

1.3.1.16 0x322 (Current Sense Phase A) 20

1.3.1.17 0x323 (Voltage Sense)« .o v i it 21

1.3.1.18 0x324 (Current Sense ADC Debug) 22

1.3.2 RX (Received by Motor Controller) 22
1.3.2.1 Summary e e e e e e e 22

1.3.2.2 0x019 (Command Packet) 23

1.3.2.3 0OxOla (EEPROM Set Parameter) 25

1.3.2.4 0x01b (EEPROM Get Parameter) 26

1.4 EEPROM Configuration v v ittt it e 27
1.4.1 Fields e e e 27

1.4.2 Reading/Writingto EEPROM 29
1.42.1 UsingProvidedTool, 29

14211 Reading 29

2.1

22

23

24

1.42.1.2 Writing e

14213 Dumping

1422 OverCAN e e
1.422.1 Writing

1.4222 Reading. e

2 MCO0-500 Hardware Documentation

Getting Started - Hardware L L o
2.1.1 0 Mounting e e e e e e e
2.1.2 Quickstart Harnessing e
Cooling L e e
22,1 Fittings e e e e e e e e e e e e
222 Coolant e
2.2.3 Flow Requirements
CONNECLOTS .« v v v o v e
231 LV CoNnector v v i e e e e e e e e e e e e e e
2.3.2 LV Connector Pinout
2.3.3 Ethernet Connector o v v v i vt e e e
234 HVCOoNNectors o v v v i it e e e e e e e e e e e e e e
235 Grounding e e e e
Environmental Sealing e
Mechanical L e

3

2.5

MC0-250 Hardware Documentation

3.1

MCO0-250 Coming Soon

ii

30
30
31
31
33

JiL |

Welcome to the Steinmetz documentation. This website is designed to be a comprehensive source
of truth This site covers everything from high-voltage hardware and assembly procedures to low-level
firmware, control software, and testing workflows.

CHAPTER
ONE

SOFTWARE DOCUMENTATION

1.1 Getting Started - Software

This guide should get you from 0 to 1 for getting a motor to spin assuming all of the hardware is setup
per Getting Started - Hardware.

In addition to setting up the hardware, before proceeding through this guide, it is recommended to un-
derstand the fundamentals of how the software works. Consider skimming through these chapters to get
a high-level understanding of the system.

e State Machine
e CAN Protocol
* EEPROM Configuration

1.1.1 Validate Interfaces

First, apply LV power to the motor controller through the LV Connector Pinout. After a short (<=5
second) delay, the unit will start emitting telemetry packets over the CAN bus. Before attempting to spin
under HV power, it is prudent to ensure that all sensors are operational

1.1.2 Validate Internal Sensors

Read the data from the Ox016 (State ID). Both cangaroo and wireshark are excellent tools to use for
this purpose on Linux. When the motor controller first turns on, it will be in the Init state (learn more
here: State Machine). It should then quickly and automatically progress to the ReadyToSwitch state if
the temperature, current, and resolver sensors are healthy. Additionally, none of the fault bits should be
active.

If one or more fault bits are set, it could indicate that the resolver’s external signals are not properly
connected, or that there is an issue internal to the unit.

1.1.3 Write Initial EEPROM values

For proper commutation, there are a few EEPROM values for which the default value is unlikely to be
appropriate for your usecase. You will almost certainly need to update these values from the default See
EEPROM Configuration for details on how to set configuration values.

https://github.com/HubertD/cangaroo
https://www.wireshark.org/

Table 1: EEPROM Fields

Field Name Default Description What will happen if it is
incorrect?
ResolverOffsetDegrees 0.0 This value should be the elec- Motor may not spin, or if

trical angle read by the resolver
when the rotor is aligned to phase
A of the motor.

LooplgPGain 0.0 See below

LooplqlGain 0.005 See below

LoopldPGain 0.0 See below

LoopldIGain 0.005 See below

ResolverPolesPerMotor- 1.0 This value should be the motor

Pole pole count / resolver
pole count. For example,

with a 10 pole motor and a 5
pole resolver, this value should
be 2.0. The sign of this value
indicates whether the resolver
is expected to read forwards or
backwards relative to the motor.

TorqueConstant 1.0 ﬁ This value should be the torque
constant from the motor’s
datasheet (rescaled to ANp$k

MaxTorqueSlewRate 65.0 Ije—rg Maximum allowable change in

torque per second

it does, commutation ef-
ficiency may be severely
degraded

Improper commutation,
or poor performance un-
der high speeds/torques
Improper commutation,
or poor performance un-
der high speeds/torques
Improper commutation,
or poor performance un-
der high speeds/torques
Improper commutation,
or poor performance un-
der high speeds/torques
Motor will not spin, re-
ported 74/i4/torque values
will be incorrect

Torque values to/from the
motor will be incorrect

Aggressive motor-
ing/regen action may
sag/lboost HV DC bus
beyond system limits.

1.1.3.1 Calculating initial Pl gains

We have found these to be a good initial guess for PI gains when manually tuning:

. Lph
0.0002

Ry

K, =0.)
p=08 0.0002

K; =038

where L, is the motor’s phase-to-neutral inductance (in Henries) and R, is the motor’s phase-to-neutral

resistance (in Ohms).

The quality of your chosen gains can be evaluated by using the Torque Control mode in the 0x019 (Com-

mand Packet).

IL :

O Note

Autotuning, plug and play operation of the motor controller units is coming via a firmware update in
2026.

1.1.4 Validate Position Sensing

Read back the data from 0x0/2 (Resolver) and 0x025 (Electrical Angle). Validate thatin 0x012 (Resolver)
there are no fault bits (FAULT should equal 0x00).

Manually spin the motor by hand to complete 1 mechanical rotation. The position reported in 0x025
(Electrical Angle) should increment or decrement depending on the direction of rotation. Ensure that the
angle returns to it’s initial angle N times, where N is the number of poles in your motor.

1.1.4.1 Tune Resolver Offset

There are a few ways to tune the resolver offset. In the future there will be more robust control algorithms
to automatically determine the optimal resolver offset.

For now, it’s possible to guess and check it. Set ResolverOffsetDegrees in the EEPROM Configuration
and apply torque using the 0x019 (Command Packet). If you see rotation begin to occur, you are close.
You should be able to tell it’s roughly tuned when applying a torque causes desired rotation and the DQ
currents are reasonably stable.

Complete!

Once you’re spinning with reasonable PI gains and a working resolver offset, you're off to the races!

1.2 State Machine

The firmware is based on a custom state machine designed in house. This page will discuss the overall
system state machine.

Table 2: States

State State Description

Number

0 Init Awaiting Initialization of all Required Sensors and Interfaces

1 Ready- The controller is ready to actuate. Motor controller is disabled but
ToSwitch has no faults.

2 Ac- The controller is actively switching in some standard control mode.
tivelySwitch-
ing

3 Faulted Some fault has occured and the motor controller should be in a dis-

abled state.
4-7,17-18 Reserved These are reserved debug states.

The high-level state machine is depicted below. Detailed transitions descriptions are found in the table
below.

The transitions are described in greater detail here.

Table 3: Transitions

Transition Description

Name

Initialized All sensors are setup and providing good data. Current Sense, Temperature Sense and
Position Sense.

Enable Valid Enable command is provided over CAN with a valid actuation command request.

Fault The motor controller has detected a critical fault. Detailed fault descriptions are found
below.

Clear The motor controller has received over CAN a ClearFaults message and has determined

Faults that the previous fault case is no longer applicable.

The faults are described here.

Table 4: Faults

Fault Name Description

Over- Detected over temperature on transistor. This is potentially hardware damaging.
Temperature

Over-Current Detected over current on phase output. This is potentially hardware damaging.
Missed Heartbeat Failed to receive command packet in last 1s. Only applicable in ActivelySwitch-

Current Comms
Loss

Temperature
Comms Loss
Neutral Point Bal-
ance Loss

ing state.
Lost communication to current sense ADCs.

Lost communication to thermistor sense ADCs

The controller has failed to maintain proper balance across the neutral point, risk-
ing overvoltage stress to the transistors.

1.3 CAN Protocol

This page describes the CAN protocol the user can use to interact with the motor controller. This includes
TX and RX. The Steinmetz motor controller uses Standard CAN IDs. In future versions, the ability to
customize the communication protocol will be possible.

O Note

By default all words are packed as little-endian.

JiL

1.3.1 TX (Emitted from Motor Controller)

1.3.1.1 Summary

Table 5: TX CAN Messages

CANID CAN Message Name Brief Description

0x012 Resolver Raw data from resolver to digital converter.

0x016 State ID The state of the state machine see: State Ma-
chine

0x01c EEPROM Set Response Response/ACK when writing to EEPROM.

0x01d EEPROM Get Response Response/ACK when reading from EEPROM.

0x020 DQ Currents Computed DQ current data.

0x021 PWM Duty Cycles Phase A, B and C switching duty cycles.

0x022 DQ PID Integral Computed integral term for DQ PID loop.

0x025 Electrical Angle Processed information on Electrical Angle

0x029 Switching Misc Data Extra telemetry data from switching.

0x306 GPIO State External GPIO Data

0x310- Temperature Data Individual Thermistor Data

0x31B

0x320- Current and Voltage Sensor Read- Phase Current and Voltage Sense Readings

0x324 ings

JiL

1.3.1.2 0x012 (Resolver)

0 7
T T T T T T T
POSITION
| | | | | | |
8 15
T T T T T T T
POSITION
| | | | | | |
16 23
T T T T T T T
VELOCITY
| | | | | | |
24 31
T T T T T T T
VELOCITY
| | | | | | |
32 39
T T T T T T T
VELOCITY
| | | | | | |
40 47
T T T T T T T
VELOCITY
| | | | | | |
48 55
T T T T T T T
FAULT
| | | | | | |

Table 6: Resolver Packet

Data Word Description Scaling Datatype
(Divide by X to
get real value)

POSITION Resolver Position in Degrees 100 ul6

VELOCITY Resolver Rotational Velocity in Degrees per sec- 100 i32
ond

FAULT The Fault bits in the resolver to digital con- N/A u8

verter. The resolver used is the AD2S1210, see
AD2S1210 datasheet, for detailed description of
the fault register.

https://www.analog.com/media/en/technical-documentation/data-sheets/ad2s1210.pdf

JiL

1.3.1.3 0x016 (State ID)

0 7
I I I I
STATE
| | | |
8 9 10 11 12 13 14 15
ovC ISNS_LOC OVT | TSNS_LOC |[HVN_NP_OV|NP_HVP_OV| RDC_FLT | HVIL_FLT
16 23
[[[[
FAULT DATA
| | | |
24 31
[[[[
FAULT DATA
| | | |
32 39
[[[[
FAULT DATA
| | | |
40 47
[[[[
FAULT DATA
| | | |
48 55
[[[[
MESSAGE HEARTBEAT TIMESTAMP
| | | |
56 63
[[[[
MESSAGE HEARTBEAT TIMESTAMP
]]]]

Table 7: State ID Packet

Data Word Description Scaling Datatype
(Divide by X to
get real value)

STATE State ID N/A u8

FAULT BITS Bitfield describing fault state N/A ud

OoVC Phase current magnitude exceeded configured N/A N/A
overcurrent threshold

ISNS_LOC Internal communication issue to current sense N/A N/A
ADC

OVT Transistor temperature exceeded configured N/A N/A
overtemperature threshold

TSNS_LOC Internal communication issue to temperature N/A N/A
sense ADC

HVN NP OV Voltage across capacitor from HV- to neutral N/A N/A
point exceeded configured threshold, indicates
risk of FET damage

NP_HVP_OV Voltage across capacitor from neutral point to N/A N/A
HV+ exceeded configured threshold, indicates
risk of FET damage

RDC_FLT The resolver has a fault, specific details in Ox0/2 N/A N/A
(Resolver)

HVIL_FLT One or more HV connectors are not properly N/A N/A
seated. This check can be enabled/disabled in the
EEPROM Configuration

FAULT DATA Extra debugging data for fault N/A 32

MESSAGE Milliseconds since last heartbeat. Saturates at 1 ul6

HEARTBEAT 65535ms.

TIMESTAMP

1.3.1.4 0x01c (EEPROM Set Response)
0 7
| | | | | |
RESPONSE
| | | | | |
8 15

RETURN CODE

Table 8: EEPROM Set Response Packet

Data Word Description Scaling Datatype
(Divide by X to
get real value)

FIELD Returns the field that was attempted to be written N/A u8
to. If the request was reset to default this field will
be OxFF.

RETURN CODE If RETURN CODE = 0x00 then successfully N/A u8

written, else it failed. Typical failure code is OxFF

1.3.1.5 0x01d (EEPROM Get Response)

0 7
T T T T T T T
FIELD
| | | | | | |
8 15
T T T T T T T
DATA
| | | | | | |
16 23
T T T T T T T
DATA
| | | | | | |
24 31
| | | | | | |
DATA
| | | | | | |
32 39
| | | | | | |
DATA
| | | | | | |

Table 9: EEPROM Get Response Packet

Data Word Description Scaling Datatype
(Divide by X to
get real value)

FIELD Returns the ID of the field that was requested N/A u8

DATA Returns the data from the field. N/A field-
dependent
(f32 de-

fault)

JiL

11
1.3.1.6 0x020 (DQ Currents)
0 7
| | | | | |
ID
| | | | | |
8 15
| | | | | |
ID
| | | | | |
16 23
| | | | | |
ID
| | | | | |
24 31
| | | | | |
1Q
| | | | | |
32 39
| | | | | |
1Q
| | | | | |
40 47
| | | | | |
1Q
| | | | | |
48 55
| | | | | |
TORQUE
| | | | | |
56 63
| | | | | |
TORQUE
| | | | | |
Table 10: DQ Currents Packet
Data Word Description Scaling Datatype
(Divide by X to
get real value)
ID Current in the D axis in amperes (signed) 1000 i24
1Q Current in the Q axis in amperes (signed) 1000 i24
TORQUE Estimated Torque being delivered based on 1000 i24

Torque Constant and Q current. (Newton-
Metres). (Currently this saturates, will be im-
proved in next firmware revision, use IQ for a bet-
ter torque estimation)

JiL

12
1.3.1.7 0x021 (PWM Duty Cycles)
0 7
| | | | | |
PHASE_A
| | | | | |
8 15
| | | | | |
PHASE_A
| | | | | |
16 23
| | | | | |
PHASE_B
| | | | | |
24 31
| | | | | |
PHASE_B
| | | | | |
32 39
T T T T T T
PHASE_C
| | | | | |
40 47
T T T T T T
PHASE_C
| | | | | |
Table 11: PWM Duty Cycles Packet
Data Word Description Scaling Datatype
(Divide by X to
get real value)
PHASE_A Duty cycle of Phase A. Duty cycle is the per- 100 il6
centage of time that the high FET is on in every
switching cycle.
PHASE_B Duty cycle of Phase B. Duty cycle is the per- 100 il6
centage of time that the high FET is on in every
switching cycle.
PHASE_C Duty cycle of Phase C. Duty cycle is the per- 100 il6

centage of time that the high FET is on in every
switching cycle.

JiL

13

1.3.1.8 0x022 (DQ PID Integral)

0

D_INTEGRAL

15

D_INTEGRAL

16

23

D_INTEGRAL

24

31

D_INTEGRAL

32

39

Q_INTEGRAL

40

47

Q_INTEGRAL

48

55

Q_INTEGRAL

56

63

Q_INTEGRAL

Table 12: DQ PID Integral Packet

Data Word

Description

Scaling

(Divide by X to
get real value)

Datatype

D_INTEGRAL

Q_INTEGRAL

The accumulated integral term for the D side of

the PID loop

The accumulated integral term for the Q side of

the PID loop

1

1

32

32

JiL

14
1.3.1.9 0x025 (Electrical Angle)
0 7
| | | | | |
ELECTRICAL_ANGLE
| | | | | |
8 15
| | | | | |
ELECTRICAL_ANGLE
| | | | | |
16 23
| | | | | |
ELECTRICAL_ANGLE
| | | | | |
24 31
| | | | | |
ELECTRICAL_ANGLE
| | | | | |
32 39
| | | | | |
ELECTRICAL_VELOCITY
| | | | | |
40 a7
| | | | | |
ELECTRICAL_VELOCITY
| | | | | |
48 25
| | | | | |
ELECTRICAL_VELOCITY
| | | | | |
56 63
T T T T T T
ELECTRICAL_VELOCITY
| | | | | |
Table 13: Electrical Angle Packet
Data Word Description Scaling Datatype
(Divide by X to
get real value)
ELECTRI- The electrical angle of the motor. Used in the 100 i32
CAL_ANGLE DQZ transforms. Stored as degrees.
ELECTRI- The electrical velocity of the motor. Used in the 100 i32

CAL_VELOCITY DQZ transforms. Stored in degrees per seconds.

JiL

15
1.3.1.10 0x029 (Switching Misc Data)
0 7
I I I I I I
RESERVED DEBUG_DATA A
| | | | | |
8 15
I I I I I I
RESERVED DEBUG_DATA A
| | | | | |
16 23
I I I I I I
RESERVED DEBUG_DATA A
| | | | | |
24 31
I I I I I I
RESERVED DEBUG_DATA A
| | | | | |
32 39
I I I I I I
RESERVED DEBUG_DATA B
| | | | | |
40 47
I I I I I I
RESERVED DEBUG_DATA B
| | | | | |
48 55
I I I I I I
RESERVED DEBUG_DATA B
| | | | | |
56 63
T T T T T T
RESERVED DEBUG_DATA B
| | | | | |
Table 14: Switching Misc Data
Data Word Description Scaling Datatype

(Divide by X to
get real value)

RE-

SERVED_DEBUG

RE-

SERVED_DEBUG

.]TI_ 16

1.3.1.11 0x306 (GPIO State)

0 7
T T T T T T T

GPIO_DATA

Table 15: GPIO State

Data Word Description Scaling Datatype
(Divide by X to
get real value)

GPIO_DATA To be implemented N/A N/A

1.3.1.12 0x310-0x31B (Temperature Data)

Indexed as (0x310 + n) where n is the nth group of temperature readings.

0 7
| | | | |
TEMPERATURE_1
| | | | |
8 15
| | | | |
TEMPERATURE_1
| | | | |
16 23
| | | | |
TEMPERATURE_2
| | | | |
24 31
| | | | |
TEMPERATURE_2
| | | | |
32 39
| | | | |
TEMPERATURE_3
| | | | |
40 47
| | | | |
TEMPERATURE_3
| | | | |
48 25
| | | | |
TEMPERATURE_4
| | | | |
56 63
| | | | |
TEMPERATURE_4
| | | | |

Table 16: Temperature Data

Data Word Description Scaling Datatype
(Divide by X to
get real value)

TEMPERA- Temperature reading from 1 thermistor in Celsius 100 i16
TURE_1
TEMPERA- Temperature reading from 1 thermistor in Celsius 100 il6
TURE_2
TEMPERA- Temperature reading from 1 thermistor in Celsius 100 il6
TURE_3
TEMPERA- Temperature reading from 1 thermistor in Celsius 100 il6
TURE_4

1.3.1.13 0x31C (External RTD interface)

Indexed as (0x310 + n) where n is the nth group of temperature readings.

0 7
[[[[[[[
EXT_RTD_VAL
]]]]]]]

8 15
[[[[[[[
EXT_RTD_VAL
]]]]]]]

16 23
[[[[[[[
EXT_RTD_VAL
]]]]]]]

24 31
I I I I I I I
EXT_RTD_VAL

Table 17: Temperature Data

Data Word Description Scaling Datatype
(Divide by X to
get real value)

EXT_RTD_VAL Temperature reading from external PT1000 RTD 100 i32
in Celsius. Can alternately report resistance —
configurable in EEPROM Configuration.

JiL

18
1.3.1.14 0x320 (Current Sense Phase C)
0 7
T T T T T T
|_ COARSE_C
| | | | | |
8 15
T T T T T T
| COARSE_C
| | | | | |
16 23
T T T T T T
| COARSE_C
| | | | | |
24 31
T T T T T T
| COARSE_C
| | | | | |
32 39
T T T T T T
| FINE_C
| | | | | |
40 47
T T T T T T
| FINE_C
| | | | | |
48 55
T T T T T T
| FINE_C
| | | | | |
56 63
| | | | | |
| FINE_C
| | | | | |
Table 18: Current Sense Phase C
Data Word Description Scaling Datatype
(Divide by X to
get real value)
I_COARSE_C Coarse current readings from Phase C in Am- 1,000,000 i32
peres.
I FINE_C Fine current readings from Phase C in Amperes. 1,000,000 i32

JiL

19
1.3.1.15 0x321 (Current Sense Phase B)
0 7
T T T T T T
|_ COARSE_B
| | | | | |
8 15
T T T T T T
|_ COARSE_B
| | | | | |
16 23
T T T T T T
| COARSE_B
| | | | | |
24 31
T T T T T T
| COARSE_B
| | | | | |
32 39
T T T T T T
| FINE_ B
| | | | | |
40 47
T T T T T T
| FINE_ B
| | | | | |
48 55
T T T T T T
|_FINE B
| | | | | |
56 63
| | | | | |
|_FINE_ B
| | | | | |
Table 19: Current Sense Phase B
Data Word Description Scaling Datatype
(Divide by X to
get real value)
I_COARSE_B Coarse current readings from Phase B in Am- 1,000,000 i32
peres.
I FINE_B Fine current readings from Phase B in Amperes. 1,000,000 i32

JiL

20
1.3.1.16 0x322 (Current Sense Phase A)
0 7
T T T T T T
|_ COARSE_A
| | | | | |
8 15
T T T T T T
|_ COARSE_A
| | | | | |
16 23
T T T T T T
| COARSE_A
| | | | | |
24 31
T T T T T T
|_ COARSE_A
| | | | | |
32 39
T T T T T T
|_FINE_A
| | | | | |
40 47
T T T T T T
|_FINE_A
| | | | | |
48 55
T T T T T T
|_FINE_A
| | | | | |
56 63
| | | | | |
|_FINE_A
| | | | | |
Table 20: Current Sense Phase A
Data Word Description Scaling Datatype
(Divide by X to
get real value)
I_COARSE_A Coarse current readings from Phase A in Am- 1,000,000 i32
peres.
I FINE_A Fine current readings from Phase A in Amperes. 1,000,000 i32

JiL

21
1.3.1.17 0x323 (Voltage Sense)
0 7
| | | | |
V_NEUTRAL_POINT
| | | | |
8 15
| | | | |
V_NEUTRAL_POINT
| | | | |
16 23
| | | | |
V_NEUTRAL_POINT
| | | | |
24 31
| | | | |
V_NEUTRAL_POINT
| | | | |
32 39
| | | | |
V_BUS
| | | | |
40 47
| | | | |
V_BUS
| | | | |
48 55
| | | | |
V_BUS
| | | | |
56 63
T T T T T
V_BUS
| | | | |
Table 21: Voltage Sense
Data Word Description Scaling Datatype
(Divide by X to
get real value)
V_NEUTRAL_PO Voltage from V- to Neutral Point in Volts. 1,000,000 i32
V_BUS Voltage from V- to V+ in Volts. 1,000,000 i32

JiL

22
1.3.1.18 0x324 (Current Sense ADC Debug)
0 7
I I I I I I I
RESERVED
| | | | | | |
8 15
T T T T T T T
RESERVED
| | | | | | |
Table 22: Current Sense ADC Debug
Data Word Description Scaling Datatype
(Divide by X to
get real value)
RESERVED N/A

1.3.2 RX (Received by Motor Controller)

1.3.2.1 Summary

Table 23: RX CAN Messages

CAN CAN Message
ID Name

Brief Description

0x019 Command Packet

0x0la EEPROM Set Param-
eter

0x01b EEPROM Get Pa-
rameter

Command packet. Used to traverse state machine and command
torque/speed.
Write parameter to EEPROM.

Read parameter to EEPROM.

JiL

23
1.3.2.2 0x019 (Command Packet)
0 7
| | | | |
COMMAND
| | | | |
8 15
| | | | |
DATA
| | | | |
16 23
| | | | |
DATA
| | | | |
24 31
T T T T T
DATA
| | | | |
32 39
T T T T T
DATA
| | | | |
Table 24: Command Packet
Data Word Description Scaling Datatype
(Divide by X to
get real value)
COMMAND Command sent from user. See Command Table N/A u8
below.
DATA The data supplement used with the command 0.1 Nm (torque i32

packet. i.e in torque control the desired torque.

control) or 1
degree per sec-
ond (velocity
control)

24
Table 25: Command Table
Command ID Command Description Data Data
Description Scaling
(Divide
by X to
get real
value)
0x00 DISABLE. This tells the motor controller to enter DATA unused, N/A
a disable state. This should take the motor con- leave as 0x00
troller into the ReadyToSwitch state.
0x01 Enable (Torque Control). This instructs the mo- DATA is de- 1
tor controller to go into torque control mode. It sired torque in
will transition to ActivelySwitching and attempt Newton-Metres
to drive a desired torque.
0x02 Enable (Velocity Control). This instructs the mo- DATA is de- 1
tor controller to go into velocity control mode. It sired velocity
will transition to ActivelySwitching and attempt in degrees per
to drive a desired velocity. second.
OxFF Clear Faults. Attempt to clear non-latching faults DATA unused, N/A

of motor controller. See State Machine

leave as 0x00

JiL

25
1.3.2.3 0x01a (EEPROM Set Parameter)
0 7
| | | | | |
FIELD
| | | | | |
8 15
| | | | | |
DATA
| | | | | |
16 23
| | | | | |
DATA
| | | | | |
24 31
| | | | | |
DATA
| | | | | |
32 39
| | | | | |
DATA
| | | | | |
40 47
| | | | | |
RESERVED
| | | | | |
48 55
| | | | | |
RESERVED
| | | | | |
56 63
T T T T T T
RESERVED
| | | | | |
Table 26: EEPROM Set Parameter Packet
Data Word Description Scaling Datatype
(Divide by X to
get real value)
FIELD ID of the desired parameter to modify N/A u8
DATA Data to be written to EEPROM parameter. N/A field-
dependent,
default
32
RESERVED Reserved data, leave as 0x00. N/A N/A

JiL s

1.3.2.4 0x01b (EEPROM Get Parameter)

0 7
T T T T T T T
FIELD
| | | | | | |
8 15
T T T T T T T
RESERVED
| | | | | | |
16 23
T T T T T T T
RESERVED
| | | | | | |
24 31
T T T T T T T
RESERVED
| | | | | | |
32 39
T T T T T T T
RESERVED
| | | | | | |
40 47
T T T T T T T
RESERVED
| | | | | | |
48 25
T T T T T T T
RESERVED
| | | | | | |
56 63
T T T T T T T
RESERVED
| | | | | | |

Table 27: EEPROM Set Parameter Packet

Data Word Description Scaling Datatype
(Divide by X to
get real value)

FIELD ID of the desired parameter to read N/A u8
RESERVED Reserved data, leave as 0x00. N/A N/A

JiL

27

1.4 EEPROM Configuration

The EEPROM allows for persistent configuration of the motor controller.

1.4.1 Fields

All values (including 32 and u32 values) are little-endian.

28

Table 28: EEPROM Fields

Field Field Name Field Description Datatype Scaling
ID (Divide
by X to get
real value)
0 NumberOf- Number of boots of the device total. (pending 32 1
Boots implementation)
1 ResolverOffset- Resolver offset from mechanical resolver an- {32 1
Degrees gle to electrical angle in degrees.
2 LooplgPGain P (proportional) gain in the Iq PID loop 32 1
3 LooplqlGain I (integral) gain in the Iq PID loop 32 1
4 LoopIgDGain D (derivative) gain in the Iq PID loop 32 1
5 LoopIlqTGain Gain for integral anti windup in the Iq PID {32 1
loop
6 LoopldPGain P (proportional) gain in the Id PID loop 32 1
7 LoopldIGain I (integral) gain in the Id PID loop 32 1
8 LoopIldDGain D (derivative) gain in the Id PID loop 32 1
9 LoopldTGain Gain for integral anti windup in the Id PID {32 1
loop
10 TorqueConstant ~ Torque constant for the motor. Units Newton- {32 1
Metres per Ampere. This torque constant is
relative to Q-Axis current. The physical in-
terpretation is roughly Nm/A where current is
the amplitude of the torque generating phase
current.
11-22 Current Scaling The user should not touch these, calibrated at {32 1
and Offsets factory.
23 LoopVelPGain P (proportional) gain in the velocity control {32 1
loop.
24 LoopVellGain I (integral) gain in the velocity control loop. 32 1
25 LoopVelDGain D (derivative) gain in the velocity control {32 1
loop.
26 LoopVelTGain Gain for integral anti windup in the velocity 32 1
control loop.
27 Max- Maximum torque slew rate in Newton-Metres 32 1
TorqueSlewRate per s.
28 Overcurrent- Maximum allowable phase current magnitude 32 1
ThresholdAmps (in Apk)
29 OvertempThresh- Maximum allowable temperature in the in- {32 1
oldCelsius verter
30 ResolverPoles- ~ Number of resolver poles per motor pole. Sign {32 1
PerMotorPole indicates resolver inversion.
31 MaxNPCapaci- Maximum allowable voltage across either {32 1
torVoltage neutral-point capacitor
32 EnableHVI- Set to 1 to prevent operation if any HV con- u32 1
LAlarm nectors are unseated. Set to O to disable this
check.
33 ExtTempSen- This value controls what is reported in the u32 N/A
sorType Ox31C (External RTD interface). 0 - Report

214

Devicaldentifier

voltage measured across voltage divider by the
internal ADC (in millivolts)]l - Report mea-
sured resistance (in Ohms)2 - Report tempera-
ture of an attached PT1000 RTD (in 100x Cel-
sius)

T Aavwer 7 hutee of the 20 hvute device identifier

7 hutec

N/ A

.TTT. 29

1.4.2 Reading/Writing to EEPROM

There are 2 ways to configure the EEPROM. You can manually send CAN messages using whatever tool
you prefer, or you can use Steinmetz’s tool which will autoformat and set that for you. The mechanism
of configuration is the same for both manually sending CAN messages or the tool, the benefit of the tool
is it will perform checks and formatting for you.

1.4.2.1 Using Provided Tool

Steinmetz provides a command-line tool to configure Avalanche EEPROM as well as manage firmware
updates. At this time, Steinmetz only provides a tool that works on Linux systems. By default, the tool
communicates over the can® socketcan interface, although this can be changed with the --can flag.

1.4.2.1.1 Reading

The config tool can be used to read individual config values, or to dump all config values. Individual
config values can be read like so:

$./steinmetz_tool config read ResolverOffsetDegrees
ResolverOffsetDegrees: 20

The list of all config values can be show with the --help flag:

$./steinmetz_tool config read --help
Read the value of a single configuration parameter

Usage: steinmetz_tool config read [OPTIONS] <KEY>

Arguments:
<KEY>

Possible values:
- NumberOfBoots
- ResolverOffsetDegrees: Resolver offset (in degrees)
- LoopIgPGain: kP for the g-axis current controller
- LoopIgIGain: kI for the g-axis current controller
- LoopIgDGain: kD for the g-axis current controller
- LoopIqTGain
- LoopIdPGain: kP for the d-axis current controller
- LoopIdIGain: kI for the d-axis current controller
- LoopIdDGain: kD for the d-axis current controller
- LoopIdTGain
- TorqueConst: Torque constant (in Nm/Amps)

- PhaseACoarseHallOffsetVolts
- PhaseBCoarseHallOffsetVolts
- PhaseCCoarseOffsetVolts

- PhaseACoarseVoltsPerAmp

- PhaseAFineHallOffsetVolts

- PhaseBFineHallOffsetVolts

- PhaseCFineOffsetVolts

- PhaseAFineVoltsPerAmp

- PhaseBCoarseVoltsPerAmp

- PhaseCCoarseVoltsPerAmp

(continues on next page)

IL 50

(continued from previous page)

- PhaseBFineVoltsPerAmp

- PhaseCFineVoltsPerAmp

- LoopVelPGain: kP for closed-loop velocity.
—controller

- LoopVellGain: kI for closed-loop velocity.
—controller

- LoopVelDGain: kD for closed-loop velocity..
—controller

- LoopVelTGain

- MaxTorqueSlewRate: Maximum allowable slew rate for.
—torque controller (in Nm/s)

- OvercurrentThresholdAmps: Maximum allowable phase current..
—magnitude (in Apk)

- OvertempThresholdCelsius: Maximum allowable temperature in the.
—inverter

- ResolverPolesPerMotorPole: Number of resolver poles per motor.,
—pole. Sign indicates resolver inversion

- MaxNpCapacitorVoltage: Maximum allowable voltage across..
—either neutral-point capacitor

- EnableHvilAlarm: Enable HVIL alarm

- ExtTempSensorType: Type of temperature sensor connected.
—to external temp port

- Deviceldentifier: The device identifier uniquely..
—identifies a device and ties it back to pre-delivery acceptance testing data

- HardwareRevision
Options:

--can <CAN>

[default: can0]

-h, --help
Print help (see a summary with '-h')

1.4.2.1.2 Writing

The tool can similarly be used to write values to EEPROM:

$./steinmetz_tool config read ResolverOffsetDegrees
ResolverOffsetDegrees: 10

$./steinmetz_tool config write ResolverOffsetDegrees 20.0
Successfully Written ResolverOffsetDegrees: 20

$./steinmetz_tool config read ResolverOffsetDegrees
ResolverOffsetDegrees: 20

1.4.2.1.3 Dumping

For efficiently reading the entire configuration (e.g in preparation to provision backup units), one may
also dump the entire config:

IL 5

$./steinmetz_tool config dump
NumberOfBoots: 0
ResolverOffsetDegrees: 178.5
LoopIgPGain: 0.03

LoopIqIGain: 6.0225
LoopIgDGain:
LoopIqTGain:
LoopIdPGain:
LoopIdIGain:
LoopIdDGain:
LoopIdTGain:
TorqueConst: 1

PhaseACoarseHallOffsetVolts: O
PhaseBCoarseHallOffsetVolts: 0
PhaseCCoarseOffsetVolts: O
PhaseACoarseVoltsPerAmp: 0.0011173621
PhaseAFineHallOffsetVolts: ©
PhaseBFineHallOffsetVolts: 0
PhaseCFineOffsetVolts: 0
PhaseAFineVoltsPerAmp: 0.004703646
PhaseBCoarseVoltsPerAmp: 0.0013163976
PhaseCCoarseVoltsPerAmp: 0.00114652
PhaseBFineVoltsPerAmp: 0.0053415336
PhaseCFineVoltsPerAmp: 0.0058397744
LoopVelPGain: 0.006

LoopVelIGain: 0.001

LoopVelDGain: 0

LoopVelTGain: 0O

MaxTorqueSlewRate: 65
OvercurrentThresholdAmps: 680
OvertempThresholdCelsius: 88
ResolverPolesPerMotorPole: 2
MaxNpCapacitorVoltage: 450

EnableHvilAlarm: O

ExtTempSensorType: 2

Deviceldentifier: a7hvgwln2ah94bmsmj8f1dfg70
HardwareRevision: 1

[=2N— o) I — I — I —}

1.4.2.2 Over CAN
1.4.2.2.1 Writing

We will go through the example of writing the ResolverOffsetDegrees to be 10 degrees.

Step 1. Prepare CAN Packet

Begin by crafting the Write EEPROM CAN Packet as per the format described in Ox0O/a (EEPROM Set
Parameter). ResolverOffsetDegrees is Field ID: 1. We want to write 10 degrees. If convert 10 to little-
endian 32 we get [0x00, 0x00, 0x20, 0x41]. So we want to transmit a Standard CAN packet with ID
Ox1a and data field as shown below:

32

FIELD: 0x01
|

15

DATA[0]: 0x00

16

23

DATA[1]: 0x00

24

31

DATA[2]: 0x20

32

39

DATA[3]: 0x41

40

47

RESERVED: 0x00

48

55

RESERVED: 0x00

56

63

RESERVED: 0x00

Step 2. Transmit CAN Packet

Ensure the motor controller is powered on and in the ReadyToSwitch state, see State Machine. Transmit

the CAN packet.

Step 3. Validate ACK Packet

When you recieve the ACK packet as described in 0x0/c (EEPROM Set Response), you should check it
to validate the write was performed correctly. The data we should recieve back per this example is shown

below.

RESPONSE: 0x01

RETURN CODE: 0x00

1.4.2.2.2 Reading.

We will go through the example of reading back the LoopIlqPGain, for our case we will assume Loop-
IgPGain is 0.5.

Step 1. Prepare CAN Packet

Begin by crafting the Read EEPROM CAN Packet as per the format described in 0x0/b (EEPROM Get
Parameter). LooplqPGain is field: 2. So we prepare the CAN packet data as shown below.

34

FIELD: 0x02

15

RESERVED:

0x00

16

23

RESERVED:

0x00

24

31

RESERVED:

0x00

32

39

RESERVED:

0x00

40

47

RESERVED:

0x00

48

55

RESERVED:

0x00

56

63

RESERVED:

0x00

Step 2. Transmit CAN Packet

Ensure the motor controller is powered on and in the ReadyToSwitch state, see State Machine. Transmit

the CAN packet.

Step 3. Validate Response Packet

When you recieve the response packet as described in 0x0/d (EEPROM Get Response), you should check
it to validate the write was performed correctly. The data we should recieve back per this example is

shown below.

35

FIELD: 0x02

15

DATA[0]: 0x00

16

23

DATA[1]: 0x00

24

31

DATA[2]: 0x00

32

39

DATA[3]: Ox3F

36

CHAPTER
TWO

MCO0-500 HARDWARE DOCUMENTATION

2.1 Getting Started - Hardware

Welcome to the Steinmetz HW - MC0-500 documentation.

This section should help you prepare your new MCO-500 unit for Getting Started - Software.

2.1.1 Mounting

MCO0-500 should be securely fastened to a rigid conductive surface. Use a flat surface, avoid any point
loading as it could damage the integrated cooling plate.

MCO0-500 is designed to be mounted via M5x0.80 fasteners. Both threaded and through hole mounting
options are provided. The corresponding bolt pattern as viewed from the enclosure bottom is:
4 3 2 1

HOLE TABLE
TAG SIZE END

MOUNTING HOLE PATTERN

D A D

A2 @53

A3
Ad
B1
B2 —

THRU

] M5x0.8
B3
B4
C C
B B
A A

4 3 2 1

The inner bolt pattern features threaded qty-4 M5x0.80 holes. The outer rectangular pattern features
qty-4 ¢5.3mm through holes. This allows for M5x0.80 bolts to be used in either orientation:

The use of a threadlocker is strongly recommended when using the threaded holes.
A torque of 5 N-m is recommended for all fasteners.

For additional mechanical information refer to Mechanical.

2.1.2 Quickstart Harnessing

The bare minimum required to run the unit is connecting all front-panel HV connections to the HV inputs
and motor outputs. On the LV side, the following connections must be made:

* LV ground (black wires with banana jack on provided harness)
* +12 Vin (red wire with banana jack on provided harness)
* CAN (green and yellow wires on provided harness)

* Resolver (group of 3 sets of twisted pairs EXC, COS, SIN on provided harness) For additional
information on pinout refer to Connectors.

Jﬂ. 38

Cooling should be attached and provided with 20 L/min of flow rate, and inlet temperatures should be
limited to 60 °C for maximum performance.

2.2 Cooling

2.2.1 Fittings

Two coolant ports are fitted to the rear of the MCO0-500 enclosure. These ports are used for motor con-
troller cooling under normal operation.

The coolant ports and cooling geometry are symmetric and coolant flow is allowable in either direction.

However, due to internal heating characteristics it is recommended that when viewed from the rear the
right port is used as the inlet, and left port as the outlet.

Qutlet

Inlet

It is recommended to use a semi-rigid tube with:
OD =8 mm, ID = 6 mm

As-provided, MCO0-500 ships with two straight barbed tube fittings. However these can be replaced with
any 1/4”-18 NPT threaded fitting.

The tubing should be rated for at least the maximum coolant pressure.

2.2.2 Coolant

The coolant plate is rated for a maximum inlet pressure of 310kPa (45 psi) relative to ambient. Pressures
in excess of the maximum may cause leakage of coolant and degraded performance.

Internal testing was performed with a coolant consisting of a 50/50 mix of water and glycol. The maxi-
mum recommended inlet temperature is 60C at full load operation.

2.2.3 Flow Requirements
The recommended flow rate to MCO0-500 is 20 LPM.

2.3 Connectors

The front face of MCO0-500 has all of the device’s connectors. When facing the front of the device, the
connectors are, from left to right:

e HV Minus

IL

39
* LV Connector
* PHC
* PHB
* PHA
* Automotive Ethernet
* HV Positive
Name Location Connector
DC + Front left Amphenol PL0O0X-301
Phase C Centre left ~ Amphenol PLO0X-301
Phase B Centre Amphenol PLO0X-301
Phase A Centre right Amphenol PLO0X-301
DC - Front right ~ Amphenol PLO0X-301
Low Voltage 10 Front left Hirose FI3WBRB-20SD
Automotive Ethernet Front right TE 9-2367359-1
The I/O ports are as follows:
4 3 2
D PHASE C D
TR © T 0 00 P Y|
C ' C
B H H B
A A
4 3 2

All connectors on MCO0-500 have a IP67 seal or better when mated.

2.3.1 LV Connector

The LV connector on MCO0-500 is the LF13WBRB-20SD from HIROSE. When mated, this connector
achieves an IPX7/IPX8 rating. The mating part is either LF13WBP-20P or LF13WBLP-20P; both come
in crimp and solder varieties and support shielding. The provided harness follows the diagram below,

.]Tl. 40

which also includes pinout information for the LV connector. Refer to the HIROSE documentation for
additional information.

The pinout is as follows:

2.3.2 LV Connector Pinout

Pin Signal Description

1 +LV_IN Main LV supply input
2 CAN L CAN Low

3 CAN_H CAN High

4 EXT_GPIO_0 External GPIO

5 EXT_GPIO_1 External GPIO

6 GND Ground

7 GND Ground

8 GND Ground

9 RESOLVER_EXC_P Resolver Excitation +
10 EXT_RTD_P External RTD Positive
11 EXT _GPIO_2 External GPIO

12 RESOLVER_SIN_N Resolver SIN-

13 GND Ground

14 RESOLVER_SIN_P Resolver SIN+

15 RESOLVER_COS_P Resolver COS+

16 EXT_RTD_N External RTD Negative
17 RESOLVER_EXC N Resolver Excitation -
18 RESERVED Reserved

19 RESERVED Reserved

20 RESOLVER_COS_N Resolver COS-

O Note

On engineering sample units, only 12V input is supported. Production models have support for 24-
48V +.

2.3.3 Ethernet Connector

The Ethernet connector on MCO0-500 is 9-2367359-1 from TE. This connector and the associated hard-
ware in MC0-500 are configured for I00BASE-T. When mated, this connector achieves IP6K9K sealing.
At this time, the firmware interface is not implemented.

The recommended mating connector is 9-2367337, which is available in a variety of forms.

2.3.4 HV Connectors

MCO0-500 has five high-voltage connectors, all of which are PLOOX-301 connectors from Amphenol
Industrial. Each has its HVIL (High Voltage Interlock) daisy-chained internally, and a fault is detected
if any connector is improperly seated. To run MCO0-500 at its maximum rated current, the mating part
should be crimped with 70 mm?2 or larger wire. When mated, this connector achieves an IP67 seal.

The mating parts are PL18X-301, PL28X-301, PL10X-301, and PL20X-301.

.]Tll. 41

2.3.5 Grounding

An M4x0.7x10 socket head cap screw is provided on the front of the enclosure, located above the low
voltage connector.

Provide a continuous low impedance connection between MCO0-500’s grounding point, chassis ground,
and the motor’s ground.

2.4 Environmental Sealing

A Warning

Current delivered engineering samples of MCO0-500 are not rated to IP67.

MCO0-500 is designed for [P67 rating when all connectors are mated.

2.5 Mechanical

MCO0-500 has dimensions of 43 mm x 298 mm x 381 mm (HxWxD), with a dry mass of 7.4 kg and
a displacement volume of 5.25 L. The front of the device features all the major electrical interfaces,
including five high-voltage connectors, a low-voltage connector, and an automotive Ethernet connector.
A threaded hole for chassis grounding is located next to the LV connector. Refer to Connectors for
additional information. Each corner of the unit contains mounting holes that accommodate fasteners
from both the top and bottom, using a combination of through and threaded holes.

At the rear of the unit are the cooling ports, which are preinstalled with 90° push-connect fittings. These
can be swapped for fittings of the customer’s choosing; refer to Cooling for additional information.

Download PDF

42

CHAPTER
THREE

MCO0-250 HARDWARE DOCUMENTATION

3.1 MCO0-250 Coming Soon

	Software Documentation
	Getting Started - Software
	Validate Interfaces
	Validate Internal Sensors
	Write Initial EEPROM values
	Calculating initial PI gains

	Validate Position Sensing
	Tune Resolver Offset

	State Machine
	CAN Protocol
	TX (Emitted from Motor Controller)
	Summary
	0x012 (Resolver)
	0x016 (State ID)
	0x01c (EEPROM Set Response)
	0x01d (EEPROM Get Response)
	0x020 (DQ Currents)
	0x021 (PWM Duty Cycles)
	0x022 (DQ PID Integral)
	0x025 (Electrical Angle)
	0x029 (Switching Misc Data)
	0x306 (GPIO State)
	0x310-0x31B (Temperature Data)
	0x31C (External RTD interface)
	0x320 (Current Sense Phase C)
	0x321 (Current Sense Phase B)
	0x322 (Current Sense Phase A)
	0x323 (Voltage Sense)
	0x324 (Current Sense ADC Debug)

	RX (Received by Motor Controller)
	Summary
	0x019 (Command Packet)
	0x01a (EEPROM Set Parameter)
	0x01b (EEPROM Get Parameter)

	EEPROM Configuration
	Fields
	Reading/Writing to EEPROM
	Using Provided Tool
	Reading
	Writing
	Dumping

	Over CAN
	Writing
	Step 1. Prepare CAN Packet
	Step 2. Transmit CAN Packet
	Step 3. Validate ACK Packet

	Reading.
	Step 1. Prepare CAN Packet
	Step 2. Transmit CAN Packet
	Step 3. Validate Response Packet

	MC0-500 Hardware Documentation
	Getting Started - Hardware
	Mounting
	Quickstart Harnessing

	Cooling
	Fittings
	Coolant
	Flow Requirements

	Connectors
	LV Connector
	LV Connector Pinout
	Ethernet Connector
	HV Connectors
	Grounding

	Environmental Sealing
	Mechanical

	MC0-250 Hardware Documentation
	MC0-250 Coming Soon

