
Steinmetz Motor Controllers

Steinmetz, Inc.

December 22, 2025

i

SOFTWARE

1 Software Documentation 2
1.1 Getting Started - Software . 2

1.1.1 Validate Interfaces . 2
1.1.2 Validate Internal Sensors . 2
1.1.3 Write Initial EEPROM values . 2

1.1.3.1 Calculating initial PI gains . 3
1.1.4 Validate Position Sensing . 4

1.1.4.1 Tune Resolver Offset . 4
1.2 State Machine . 4
1.3 CAN Protocol . 5

1.3.1 TX (Emitted from Motor Controller) . 6
1.3.1.1 Summary . 6
1.3.1.2 0x012 (Resolver) . 7
1.3.1.3 0x016 (State ID) . 8
1.3.1.4 0x01c (EEPROM Set Response) . 9
1.3.1.5 0x01d (EEPROM Get Response) . 10
1.3.1.6 0x020 (DQ Currents) . 11
1.3.1.7 0x021 (PWM Duty Cycles) . 12
1.3.1.8 0x022 (DQ PID Integral) . 13
1.3.1.9 0x025 (Electrical Angle) . 14
1.3.1.10 0x029 (Switching Misc Data) . 15
1.3.1.11 0x306 (GPIO State) . 16
1.3.1.12 0x310-0x31B (Temperature Data) . 16
1.3.1.13 0x31C (External RTD interface) . 17
1.3.1.14 0x320 (Current Sense Phase C) . 18
1.3.1.15 0x321 (Current Sense Phase B) . 19
1.3.1.16 0x322 (Current Sense Phase A) . 20
1.3.1.17 0x323 (Voltage Sense) . 21
1.3.1.18 0x324 (Current Sense ADC Debug) 22

1.3.2 RX (Received by Motor Controller) . 22
1.3.2.1 Summary . 22
1.3.2.2 0x019 (Command Packet) . 23
1.3.2.3 0x01a (EEPROM Set Parameter) . 25
1.3.2.4 0x01b (EEPROM Get Parameter) . 26

1.4 EEPROM Configuration . 27
1.4.1 Fields . 27
1.4.2 Reading/Writing to EEPROM . 29

1.4.2.1 Using Provided Tool . 29
1.4.2.1.1 Reading . 29

ii

1.4.2.1.2 Writing . 30
1.4.2.1.3 Dumping . 30

1.4.2.2 Over CAN . 31
1.4.2.2.1 Writing . 31
1.4.2.2.2 Reading. 33

2 MC0-500 Hardware Documentation 36
2.1 Getting Started - Hardware . 36

2.1.1 Mounting . 36
2.1.2 Quickstart Harnessing . 37

2.2 Cooling . 38
2.2.1 Fittings . 38
2.2.2 Coolant . 38
2.2.3 Flow Requirements . 38

2.3 Connectors . 38
2.3.1 LV Connector . 39
2.3.2 LV Connector Pinout . 40
2.3.3 Ethernet Connector . 40
2.3.4 HV Connectors . 40
2.3.5 Grounding . 41

2.4 Environmental Sealing . 41
2.5 Mechanical . 41

3 MC0-250 Hardware Documentation 42
3.1 MC0-250 Coming Soon . 42

1

Welcome to the Steinmetz documentation. This website is designed to be a comprehensive source
of truth This site covers everything from high-voltage hardware and assembly procedures to low-level
firmware, control software, and testing workflows.

2

CHAPTER

ONE

SOFTWARE DOCUMENTATION

1.1 Getting Started - Software
This guide should get you from 0 to 1 for getting a motor to spin assuming all of the hardware is setup
per Getting Started - Hardware.

In addition to setting up the hardware, before proceeding through this guide, it is recommended to un-
derstand the fundamentals of how the software works. Consider skimming through these chapters to get
a high-level understanding of the system.

• State Machine

• CAN Protocol

• EEPROM Configuration

1.1.1 Validate Interfaces
First, apply LV power to the motor controller through the LV Connector Pinout. After a short (<=5
second) delay, the unit will start emitting telemetry packets over the CAN bus. Before attempting to spin
under HV power, it is prudent to ensure that all sensors are operational

1.1.2 Validate Internal Sensors
Read the data from the 0x016 (State ID). Both cangaroo and wireshark are excellent tools to use for
this purpose on Linux. When the motor controller first turns on, it will be in the Init state (learn more
here: State Machine). It should then quickly and automatically progress to the ReadyToSwitch state if
the temperature, current, and resolver sensors are healthy. Additionally, none of the fault bits should be
active.

If one or more fault bits are set, it could indicate that the resolver’s external signals are not properly
connected, or that there is an issue internal to the unit.

1.1.3 Write Initial EEPROM values
For proper commutation, there are a few EEPROM values for which the default value is unlikely to be
appropriate for your usecase. You will almost certainly need to update these values from the default See
EEPROM Configuration for details on how to set configuration values.

https://github.com/HubertD/cangaroo
https://www.wireshark.org/

3

Table 1: EEPROM Fields

Field Name Default Description What will happen if it is
incorrect?

ResolverOffsetDegrees 0.0 This value should be the elec-
trical angle read by the resolver
when the rotor is aligned to phase
A of the motor.

Motor may not spin, or if
it does, commutation ef-
ficiency may be severely
degraded

LoopIqPGain 0.0 See below Improper commutation,
or poor performance un-
der high speeds/torques

LoopIqIGain 0.005 See below Improper commutation,
or poor performance un-
der high speeds/torques

LoopIdPGain 0.0 See below Improper commutation,
or poor performance un-
der high speeds/torques

LoopIdIGain 0.005 See below Improper commutation,
or poor performance un-
der high speeds/torques

ResolverPolesPerMotor-
Pole

1.0 This value should be the motor
pole count / resolver
pole count. For example,
with a 10 pole motor and a 5
pole resolver, this value should
be 2.0. The sign of this value
indicates whether the resolver
is expected to read forwards or
backwards relative to the motor.

Motor will not spin, re-
ported 𝑖𝑑/𝑖𝑞/torque values
will be incorrect

TorqueConstant 1.0 Nm
Apeak

This value should be the torque
constant from the motor’s
datasheet (rescaled to Nm

Apeak
)

Torque values to/from the
motor will be incorrect

MaxTorqueSlewRate 65.0 Nm
sec Maximum allowable change in

torque per second
Aggressive motor-
ing/regen action may
sag/boost HV DC bus
beyond system limits.

1.1.3.1 Calculating initial PI gains

We have found these to be a good initial guess for PI gains when manually tuning:

𝐾𝑝 = 0.8 ·
𝐿𝑝ℎ

0.0002
𝐾𝑖 = 0.8 ·

𝑅𝑝ℎ

0.0002

where𝐿𝑝ℎ is the motor’s phase-to-neutral inductance (in Henries) and𝑅𝑝ℎ is the motor’s phase-to-neutral
resistance (in Ohms).

The quality of your chosen gains can be evaluated by using the Torque Control mode in the 0x019 (Com-
mand Packet).

4

ò Note

Autotuning, plug and play operation of the motor controller units is coming via a firmware update in
2026.

1.1.4 Validate Position Sensing
Read back the data from 0x012 (Resolver) and 0x025 (Electrical Angle). Validate that in 0x012 (Resolver)
there are no fault bits (FAULT should equal 0x00).

Manually spin the motor by hand to complete 1 mechanical rotation. The position reported in 0x025
(Electrical Angle) should increment or decrement depending on the direction of rotation. Ensure that the
angle returns to it’s initial angle N times, where N is the number of poles in your motor.

1.1.4.1 Tune Resolver Offset

There are a few ways to tune the resolver offset. In the future there will be more robust control algorithms
to automatically determine the optimal resolver offset.

For now, it’s possible to guess and check it. Set ResolverOffsetDegrees in the EEPROM Configuration
and apply torque using the 0x019 (Command Packet). If you see rotation begin to occur, you are close.
You should be able to tell it’s roughly tuned when applying a torque causes desired rotation and the DQ
currents are reasonably stable.

Complete!

Once you’re spinning with reasonable PI gains and a working resolver offset, you’re off to the races!

1.2 State Machine
The firmware is based on a custom state machine designed in house. This page will discuss the overall
system state machine.

Table 2: States

State
Number

State Description

0 Init Awaiting Initialization of all Required Sensors and Interfaces
1 Ready-

ToSwitch
The controller is ready to actuate. Motor controller is disabled but
has no faults.

2 Ac-
tivelySwitch-
ing

The controller is actively switching in some standard control mode.

3 Faulted Some fault has occured and the motor controller should be in a dis-
abled state.

4-7, 17-18 Reserved These are reserved debug states.

The high-level state machine is depicted below. Detailed transitions descriptions are found in the table
below.

The transitions are described in greater detail here.

5

Table 3: Transitions

Transition
Name

Description

Initialized All sensors are setup and providing good data. Current Sense, Temperature Sense and
Position Sense.

Enable Valid Enable command is provided over CAN with a valid actuation command request.
Fault The motor controller has detected a critical fault. Detailed fault descriptions are found

below.
Clear
Faults

The motor controller has received over CAN a ClearFaults message and has determined
that the previous fault case is no longer applicable.

The faults are described here.

Table 4: Faults

Fault Name Description

Over-
Temperature

Detected over temperature on transistor. This is potentially hardware damaging.

Over-Current Detected over current on phase output. This is potentially hardware damaging.
Missed Heartbeat Failed to receive command packet in last 1s. Only applicable in ActivelySwitch-

ing state.
Current Comms
Loss

Lost communication to current sense ADCs.

Temperature
Comms Loss

Lost communication to thermistor sense ADCs

Neutral Point Bal-
ance Loss

The controller has failed to maintain proper balance across the neutral point, risk-
ing overvoltage stress to the transistors.

1.3 CAN Protocol
This page describes the CAN protocol the user can use to interact with the motor controller. This includes
TX and RX. The Steinmetz motor controller uses Standard CAN IDs. In future versions, the ability to
customize the communication protocol will be possible.

ò Note

By default all words are packed as little-endian.

6

1.3.1 TX (Emitted from Motor Controller)

1.3.1.1 Summary

Table 5: TX CAN Messages

CAN ID CAN Message Name Brief Description

0x012 Resolver Raw data from resolver to digital converter.
0x016 State ID The state of the state machine see: State Ma-

chine
0x01c EEPROM Set Response Response/ACK when writing to EEPROM.
0x01d EEPROM Get Response Response/ACK when reading from EEPROM.
0x020 DQ Currents Computed DQ current data.
0x021 PWM Duty Cycles Phase A, B and C switching duty cycles.
0x022 DQ PID Integral Computed integral term for DQ PID loop.
0x025 Electrical Angle Processed information on Electrical Angle
0x029 Switching Misc Data Extra telemetry data from switching.
0x306 GPIO State External GPIO Data
0x310-
0x31B

Temperature Data Individual Thermistor Data

0x320-
0x324

Current and Voltage Sensor Read-
ings

Phase Current and Voltage Sense Readings

7

1.3.1.2 0x012 (Resolver)

0 7

POSITION

8 15

POSITION

16 23

VELOCITY

24 31

VELOCITY

32 39

VELOCITY

40 47

VELOCITY

48 55

FAULT

Table 6: Resolver Packet

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

POSITION Resolver Position in Degrees 100 u16
VELOCITY Resolver Rotational Velocity in Degrees per sec-

ond
100 i32

FAULT The Fault bits in the resolver to digital con-
verter. The resolver used is the AD2S1210, see
AD2S1210 datasheet, for detailed description of
the fault register.

N/A u8

https://www.analog.com/media/en/technical-documentation/data-sheets/ad2s1210.pdf

8

1.3.1.3 0x016 (State ID)

0 7

STATE

8 9 10 11 12 13 14 15

OVC ISNS_LOC OVT TSNS_LOC HVN_NP_OV NP_HVP_OV RDC_FLT HVIL_FLT

16 23

FAULT DATA

24 31

FAULT DATA

32 39

FAULT DATA

40 47

FAULT DATA

48 55

MESSAGE HEARTBEAT TIMESTAMP

56 63

MESSAGE HEARTBEAT TIMESTAMP

9

Table 7: State ID Packet

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

STATE State ID N/A u8
FAULT BITS Bitfield describing fault state N/A u8
OVC Phase current magnitude exceeded configured

overcurrent threshold
N/A N/A

ISNS_LOC Internal communication issue to current sense
ADC

N/A N/A

OVT Transistor temperature exceeded configured
overtemperature threshold

N/A N/A

TSNS_LOC Internal communication issue to temperature
sense ADC

N/A N/A

HVN_NP_OV Voltage across capacitor from HV- to neutral
point exceeded configured threshold, indicates
risk of FET damage

N/A N/A

NP_HVP_OV Voltage across capacitor from neutral point to
HV+ exceeded configured threshold, indicates
risk of FET damage

N/A N/A

RDC_FLT The resolver has a fault, specific details in 0x012
(Resolver)

N/A N/A

HVIL_FLT One or more HV connectors are not properly
seated. This check can be enabled/disabled in the
EEPROM Configuration

N/A N/A

FAULT DATA Extra debugging data for fault N/A f32
MESSAGE
HEARTBEAT
TIMESTAMP

Milliseconds since last heartbeat. Saturates at
65535ms.

1 u16

1.3.1.4 0x01c (EEPROM Set Response)

0 7

RESPONSE

8 15

RETURN CODE

10

Table 8: EEPROM Set Response Packet

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

FIELD Returns the field that was attempted to be written
to. If the request was reset to default this field will
be 0xFF.

N/A u8

RETURN CODE If RETURN CODE = 0x00 then successfully
written, else it failed. Typical failure code is 0xFF

N/A u8

1.3.1.5 0x01d (EEPROM Get Response)

0 7

FIELD

8 15

DATA

16 23

DATA

24 31

DATA

32 39

DATA

Table 9: EEPROM Get Response Packet

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

FIELD Returns the ID of the field that was requested N/A u8
DATA Returns the data from the field. N/A field-

dependent
(f32 de-
fault)

11

1.3.1.6 0x020 (DQ Currents)

0 7

ID

8 15

ID

16 23

ID

24 31

IQ

32 39

IQ

40 47

IQ

48 55

TORQUE

56 63

TORQUE

Table 10: DQ Currents Packet

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

ID Current in the D axis in amperes (signed) 1000 i24
IQ Current in the Q axis in amperes (signed) 1000 i24
TORQUE Estimated Torque being delivered based on

Torque Constant and Q current. (Newton-
Metres). (Currently this saturates, will be im-
proved in next firmware revision, use IQ for a bet-
ter torque estimation)

1000 i24

12

1.3.1.7 0x021 (PWM Duty Cycles)

0 7

PHASE_A

8 15

PHASE_A

16 23

PHASE_B

24 31

PHASE_B

32 39

PHASE_C

40 47

PHASE_C

Table 11: PWM Duty Cycles Packet

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

PHASE_A Duty cycle of Phase A. Duty cycle is the per-
centage of time that the high FET is on in every
switching cycle.

100 i16

PHASE_B Duty cycle of Phase B. Duty cycle is the per-
centage of time that the high FET is on in every
switching cycle.

100 i16

PHASE_C Duty cycle of Phase C. Duty cycle is the per-
centage of time that the high FET is on in every
switching cycle.

100 i16

13

1.3.1.8 0x022 (DQ PID Integral)

0 7

D_INTEGRAL

8 15

D_INTEGRAL

16 23

D_INTEGRAL

24 31

D_INTEGRAL

32 39

Q_INTEGRAL

40 47

Q_INTEGRAL

48 55

Q_INTEGRAL

56 63

Q_INTEGRAL

Table 12: DQ PID Integral Packet

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

D_INTEGRAL The accumulated integral term for the D side of
the PID loop

1 f32

Q_INTEGRAL The accumulated integral term for the Q side of
the PID loop

1 f32

14

1.3.1.9 0x025 (Electrical Angle)

0 7

ELECTRICAL_ANGLE

8 15

ELECTRICAL_ANGLE

16 23

ELECTRICAL_ANGLE

24 31

ELECTRICAL_ANGLE

32 39

ELECTRICAL_VELOCITY

40 47

ELECTRICAL_VELOCITY

48 55

ELECTRICAL_VELOCITY

56 63

ELECTRICAL_VELOCITY

Table 13: Electrical Angle Packet

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

ELECTRI-
CAL_ANGLE

The electrical angle of the motor. Used in the
DQZ transforms. Stored as degrees.

100 i32

ELECTRI-
CAL_VELOCITY

The electrical velocity of the motor. Used in the
DQZ transforms. Stored in degrees per seconds.

100 i32

15

1.3.1.10 0x029 (Switching Misc Data)

0 7

RESERVED_DEBUG_DATA_A

8 15

RESERVED_DEBUG_DATA_A

16 23

RESERVED_DEBUG_DATA_A

24 31

RESERVED_DEBUG_DATA_A

32 39

RESERVED_DEBUG_DATA_B

40 47

RESERVED_DEBUG_DATA_B

48 55

RESERVED_DEBUG_DATA_B

56 63

RESERVED_DEBUG_DATA_B

Table 14: Switching Misc Data

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

RE-
SERVED_DEBUG_DATA_A
RE-
SERVED_DEBUG_DATA_B

16

1.3.1.11 0x306 (GPIO State)

0 7

GPIO_DATA

Table 15: GPIO State

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

GPIO_DATA To be implemented N/A N/A

1.3.1.12 0x310-0x31B (Temperature Data)

Indexed as (0x310 + n) where n is the nth group of temperature readings.

0 7

TEMPERATURE_1

8 15

TEMPERATURE_1

16 23

TEMPERATURE_2

24 31

TEMPERATURE_2

32 39

TEMPERATURE_3

40 47

TEMPERATURE_3

48 55

TEMPERATURE_4

56 63

TEMPERATURE_4

17

Table 16: Temperature Data

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

TEMPERA-
TURE_1

Temperature reading from 1 thermistor in Celsius 100 i16

TEMPERA-
TURE_2

Temperature reading from 1 thermistor in Celsius 100 i16

TEMPERA-
TURE_3

Temperature reading from 1 thermistor in Celsius 100 i16

TEMPERA-
TURE_4

Temperature reading from 1 thermistor in Celsius 100 i16

1.3.1.13 0x31C (External RTD interface)

Indexed as (0x310 + n) where n is the nth group of temperature readings.

0 7

EXT_RTD_VAL

8 15

EXT_RTD_VAL

16 23

EXT_RTD_VAL

24 31

EXT_RTD_VAL

Table 17: Temperature Data

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

EXT_RTD_VAL Temperature reading from external PT1000 RTD
in Celsius. Can alternately report resistance –
configurable in EEPROM Configuration.

100 i32

18

1.3.1.14 0x320 (Current Sense Phase C)

0 7

I_COARSE_C

8 15

I_COARSE_C

16 23

I_COARSE_C

24 31

I_COARSE_C

32 39

I_FINE_C

40 47

I_FINE_C

48 55

I_FINE_C

56 63

I_FINE_C

Table 18: Current Sense Phase C

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

I_COARSE_C Coarse current readings from Phase C in Am-
peres.

1,000,000 i32

I_FINE_C Fine current readings from Phase C in Amperes. 1,000,000 i32

19

1.3.1.15 0x321 (Current Sense Phase B)

0 7

I_COARSE_B

8 15

I_COARSE_B

16 23

I_COARSE_B

24 31

I_COARSE_B

32 39

I_FINE_B

40 47

I_FINE_B

48 55

I_FINE_B

56 63

I_FINE_B

Table 19: Current Sense Phase B

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

I_COARSE_B Coarse current readings from Phase B in Am-
peres.

1,000,000 i32

I_FINE_B Fine current readings from Phase B in Amperes. 1,000,000 i32

20

1.3.1.16 0x322 (Current Sense Phase A)

0 7

I_COARSE_A

8 15

I_COARSE_A

16 23

I_COARSE_A

24 31

I_COARSE_A

32 39

I_FINE_A

40 47

I_FINE_A

48 55

I_FINE_A

56 63

I_FINE_A

Table 20: Current Sense Phase A

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

I_COARSE_A Coarse current readings from Phase A in Am-
peres.

1,000,000 i32

I_FINE_A Fine current readings from Phase A in Amperes. 1,000,000 i32

21

1.3.1.17 0x323 (Voltage Sense)

0 7

V_NEUTRAL_POINT

8 15

V_NEUTRAL_POINT

16 23

V_NEUTRAL_POINT

24 31

V_NEUTRAL_POINT

32 39

V_BUS

40 47

V_BUS

48 55

V_BUS

56 63

V_BUS

Table 21: Voltage Sense

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

V_NEUTRAL_POINTVoltage from V- to Neutral Point in Volts. 1,000,000 i32
V_BUS Voltage from V- to V+ in Volts. 1,000,000 i32

22

1.3.1.18 0x324 (Current Sense ADC Debug)

0 7

RESERVED

8 15

RESERVED

Table 22: Current Sense ADC Debug

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

RESERVED N/A

1.3.2 RX (Received by Motor Controller)

1.3.2.1 Summary

Table 23: RX CAN Messages

CAN
ID

CAN Message
Name

Brief Description

0x019 Command Packet Command packet. Used to traverse state machine and command
torque/speed.

0x01a EEPROM Set Param-
eter

Write parameter to EEPROM.

0x01b EEPROM Get Pa-
rameter

Read parameter to EEPROM.

23

1.3.2.2 0x019 (Command Packet)

0 7

COMMAND

8 15

DATA

16 23

DATA

24 31

DATA

32 39

DATA

Table 24: Command Packet

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

COMMAND Command sent from user. See Command Table
below.

N/A u8

DATA The data supplement used with the command
packet. i.e in torque control the desired torque.

0.1 Nm (torque
control) or 1
degree per sec-
ond (velocity
control)

i32

24

Table 25: Command Table

Command ID Command Description Data
Description

Data
Scaling
(Divide
by X to
get real
value)

0x00 DISABLE. This tells the motor controller to enter
a disable state. This should take the motor con-
troller into the ReadyToSwitch state.

DATA unused,
leave as 0x00

N/A

0x01 Enable (Torque Control). This instructs the mo-
tor controller to go into torque control mode. It
will transition to ActivelySwitching and attempt
to drive a desired torque.

DATA is de-
sired torque in
Newton-Metres

1

0x02 Enable (Velocity Control). This instructs the mo-
tor controller to go into velocity control mode. It
will transition to ActivelySwitching and attempt
to drive a desired velocity.

DATA is de-
sired velocity
in degrees per
second.

1

0xFF Clear Faults. Attempt to clear non-latching faults
of motor controller. See State Machine

DATA unused,
leave as 0x00

N/A

25

1.3.2.3 0x01a (EEPROM Set Parameter)

0 7

FIELD

8 15

DATA

16 23

DATA

24 31

DATA

32 39

DATA

40 47

RESERVED

48 55

RESERVED

56 63

RESERVED

Table 26: EEPROM Set Parameter Packet

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

FIELD ID of the desired parameter to modify N/A u8
DATA Data to be written to EEPROM parameter. N/A field-

dependent,
default
f32

RESERVED Reserved data, leave as 0x00. N/A N/A

26

1.3.2.4 0x01b (EEPROM Get Parameter)

0 7

FIELD

8 15

RESERVED

16 23

RESERVED

24 31

RESERVED

32 39

RESERVED

40 47

RESERVED

48 55

RESERVED

56 63

RESERVED

Table 27: EEPROM Set Parameter Packet

Data Word Description Scaling
(Divide by X to
get real value)

Datatype

FIELD ID of the desired parameter to read N/A u8
RESERVED Reserved data, leave as 0x00. N/A N/A

27

1.4 EEPROM Configuration
The EEPROM allows for persistent configuration of the motor controller.

1.4.1 Fields
All values (including f32 and u32 values) are little-endian.

28

Table 28: EEPROM Fields

Field
ID

Field Name Field Description Datatype Scaling
(Divide
by X to get
real value)

0 NumberOf-
Boots

Number of boots of the device total. (pending
implementation)

f32 1

1 ResolverOffset-
Degrees

Resolver offset from mechanical resolver an-
gle to electrical angle in degrees.

f32 1

2 LoopIqPGain P (proportional) gain in the Iq PID loop f32 1
3 LoopIqIGain I (integral) gain in the Iq PID loop f32 1
4 LoopIqDGain D (derivative) gain in the Iq PID loop f32 1
5 LoopIqTGain Gain for integral anti windup in the Iq PID

loop
f32 1

6 LoopIdPGain P (proportional) gain in the Id PID loop f32 1
7 LoopIdIGain I (integral) gain in the Id PID loop f32 1
8 LoopIdDGain D (derivative) gain in the Id PID loop f32 1
9 LoopIdTGain Gain for integral anti windup in the Id PID

loop
f32 1

10 TorqueConstant Torque constant for the motor. Units Newton-
Metres per Ampere. This torque constant is
relative to Q-Axis current. The physical in-
terpretation is roughly Nm/A where current is
the amplitude of the torque generating phase
current.

f32 1

11-22 Current Scaling
and Offsets

The user should not touch these, calibrated at
factory.

f32 1

23 LoopVelPGain P (proportional) gain in the velocity control
loop.

f32 1

24 LoopVelIGain I (integral) gain in the velocity control loop. f32 1
25 LoopVelDGain D (derivative) gain in the velocity control

loop.
f32 1

26 LoopVelTGain Gain for integral anti windup in the velocity
control loop.

f32 1

27 Max-
TorqueSlewRate

Maximum torque slew rate in Newton-Metres
per s.

f32 1

28 Overcurrent-
ThresholdAmps

Maximum allowable phase current magnitude
(in Apk)

f32 1

29 OvertempThresh-
oldCelsius

Maximum allowable temperature in the in-
verter

f32 1

30 ResolverPoles-
PerMotorPole

Number of resolver poles per motor pole. Sign
indicates resolver inversion.

f32 1

31 MaxNPCapaci-
torVoltage

Maximum allowable voltage across either
neutral-point capacitor

f32 1

32 EnableHVI-
LAlarm

Set to 1 to prevent operation if any HV con-
nectors are unseated. Set to 0 to disable this
check.

u32 1

33 ExtTempSen-
sorType

This value controls what is reported in the
0x31C (External RTD interface). 0 - Report
voltage measured across voltage divider by the
internal ADC (in millivolts)1 - Report mea-
sured resistance (in Ohms)2 - Report tempera-
ture of an attached PT1000 RTD (in 100x Cel-
sius)

u32 N/A

34 DeviceIdentifier Lower 7 bytes of the 20-byte device identifier
(little endian). The device identifier as printed
on the unit is shown in base 36.

7 bytes N/A

35 DeviceIdenti-
fier2

Middle 7 bytes of the 20-byte device identifier
(little endian)

7 bytes N/A

36 DeviceIdenti-
fier3

Upper 6 bytes of the 20-byte device identifier
(little endian)

6 bytes N/A

37 HardwareRevi-
sion

Internal revision number for sensing and con-
trol circuitry.

u32 N/A

29

1.4.2 Reading/Writing to EEPROM
There are 2 ways to configure the EEPROM. You can manually send CAN messages using whatever tool
you prefer, or you can use Steinmetz’s tool which will autoformat and set that for you. The mechanism
of configuration is the same for both manually sending CAN messages or the tool, the benefit of the tool
is it will perform checks and formatting for you.

1.4.2.1 Using Provided Tool

Steinmetz provides a command-line tool to configure Avalanche EEPROM as well as manage firmware
updates. At this time, Steinmetz only provides a tool that works on Linux systems. By default, the tool
communicates over the can0 socketcan interface, although this can be changed with the --can flag.

1.4.2.1.1 Reading

The config tool can be used to read individual config values, or to dump all config values. Individual
config values can be read like so:

$./steinmetz_tool config read ResolverOffsetDegrees
ResolverOffsetDegrees: 20

The list of all config values can be show with the --help flag:

$./steinmetz_tool config read --help
Read the value of a single configuration parameter

Usage: steinmetz_tool config read [OPTIONS] <KEY>

Arguments:
<KEY>

Possible values:
- NumberOfBoots
- ResolverOffsetDegrees: Resolver offset (in degrees)
- LoopIqPGain: kP for the q-axis current controller
- LoopIqIGain: kI for the q-axis current controller
- LoopIqDGain: kD for the q-axis current controller
- LoopIqTGain
- LoopIdPGain: kP for the d-axis current controller
- LoopIdIGain: kI for the d-axis current controller
- LoopIdDGain: kD for the d-axis current controller
- LoopIdTGain
- TorqueConst: Torque constant (in Nm/Amps)
- PhaseACoarseHallOffsetVolts
- PhaseBCoarseHallOffsetVolts
- PhaseCCoarseOffsetVolts
- PhaseACoarseVoltsPerAmp
- PhaseAFineHallOffsetVolts
- PhaseBFineHallOffsetVolts
- PhaseCFineOffsetVolts
- PhaseAFineVoltsPerAmp
- PhaseBCoarseVoltsPerAmp
- PhaseCCoarseVoltsPerAmp

(continues on next page)

30

(continued from previous page)

- PhaseBFineVoltsPerAmp
- PhaseCFineVoltsPerAmp
- LoopVelPGain: kP for closed-loop velocity␣

→˓controller
- LoopVelIGain: kI for closed-loop velocity␣

→˓controller
- LoopVelDGain: kD for closed-loop velocity␣

→˓controller
- LoopVelTGain
- MaxTorqueSlewRate: Maximum allowable slew rate for␣

→˓torque controller (in Nm/s)
- OvercurrentThresholdAmps: Maximum allowable phase current␣

→˓magnitude (in Apk)
- OvertempThresholdCelsius: Maximum allowable temperature in the␣

→˓inverter
- ResolverPolesPerMotorPole: Number of resolver poles per motor␣

→˓pole. Sign indicates resolver inversion
- MaxNpCapacitorVoltage: Maximum allowable voltage across␣

→˓either neutral-point capacitor
- EnableHvilAlarm: Enable HVIL alarm
- ExtTempSensorType: Type of temperature sensor connected␣

→˓to external temp port
- DeviceIdentifier: The device identifier uniquely␣

→˓identifies a device and ties it back to pre-delivery acceptance testing data
- HardwareRevision

Options:
--can <CAN>

[default: can0]

-h, --help
Print help (see a summary with '-h')

1.4.2.1.2 Writing

The tool can similarly be used to write values to EEPROM:

$./steinmetz_tool config read ResolverOffsetDegrees
ResolverOffsetDegrees: 10
$./steinmetz_tool config write ResolverOffsetDegrees 20.0
Successfully Written ResolverOffsetDegrees: 20
$./steinmetz_tool config read ResolverOffsetDegrees
ResolverOffsetDegrees: 20

1.4.2.1.3 Dumping

For efficiently reading the entire configuration (e.g in preparation to provision backup units), one may
also dump the entire config:

31

$./steinmetz_tool config dump
NumberOfBoots: 0
ResolverOffsetDegrees: 178.5
LoopIqPGain: 0.03
LoopIqIGain: 6.0225
LoopIqDGain: 0
LoopIqTGain: 0
LoopIdPGain: 0.03
LoopIdIGain: 6.0225
LoopIdDGain: 0
LoopIdTGain: 0
TorqueConst: 1
PhaseACoarseHallOffsetVolts: 0
PhaseBCoarseHallOffsetVolts: 0
PhaseCCoarseOffsetVolts: 0
PhaseACoarseVoltsPerAmp: 0.0011173621
PhaseAFineHallOffsetVolts: 0
PhaseBFineHallOffsetVolts: 0
PhaseCFineOffsetVolts: 0
PhaseAFineVoltsPerAmp: 0.004703646
PhaseBCoarseVoltsPerAmp: 0.0013163976
PhaseCCoarseVoltsPerAmp: 0.00114652
PhaseBFineVoltsPerAmp: 0.0053415336
PhaseCFineVoltsPerAmp: 0.0058397744
LoopVelPGain: 0.006
LoopVelIGain: 0.001
LoopVelDGain: 0
LoopVelTGain: 0
MaxTorqueSlewRate: 65
OvercurrentThresholdAmps: 680
OvertempThresholdCelsius: 88
ResolverPolesPerMotorPole: 2
MaxNpCapacitorVoltage: 450
EnableHvilAlarm: 0
ExtTempSensorType: 2
DeviceIdentifier: a7hvgw1n2ah94bmsmj8f1dfg70
HardwareRevision: 1

1.4.2.2 Over CAN

1.4.2.2.1 Writing

We will go through the example of writing the ResolverOffsetDegrees to be 10 degrees.

Step 1. Prepare CAN Packet

Begin by crafting the Write EEPROM CAN Packet as per the format described in 0x01a (EEPROM Set
Parameter). ResolverOffsetDegrees is Field ID: 1. We want to write 10 degrees. If convert 10 to little-
endian f32 we get [0x00, 0x00, 0x20, 0x41]. So we want to transmit a Standard CAN packet with ID
0x1a and data field as shown below:

32

0 7

FIELD: 0x01

8 15

DATA[0]: 0x00

16 23

DATA[1]: 0x00

24 31

DATA[2]: 0x20

32 39

DATA[3]: 0x41

40 47

RESERVED: 0x00

48 55

RESERVED: 0x00

56 63

RESERVED: 0x00

Step 2. Transmit CAN Packet

Ensure the motor controller is powered on and in the ReadyToSwitch state, see State Machine. Transmit
the CAN packet.

Step 3. Validate ACK Packet

When you recieve the ACK packet as described in 0x01c (EEPROM Set Response), you should check it
to validate the write was performed correctly. The data we should recieve back per this example is shown
below.

33

0 7

RESPONSE: 0x01

8 15

RETURN CODE: 0x00

1.4.2.2.2 Reading.

We will go through the example of reading back the LoopIqPGain, for our case we will assume Loop-
IqPGain is 0.5.

Step 1. Prepare CAN Packet

Begin by crafting the Read EEPROM CAN Packet as per the format described in 0x01b (EEPROM Get
Parameter). LoopIqPGain is field: 2. So we prepare the CAN packet data as shown below.

34

0 7

FIELD: 0x02

8 15

RESERVED: 0x00

16 23

RESERVED: 0x00

24 31

RESERVED: 0x00

32 39

RESERVED: 0x00

40 47

RESERVED: 0x00

48 55

RESERVED: 0x00

56 63

RESERVED: 0x00

Step 2. Transmit CAN Packet

Ensure the motor controller is powered on and in the ReadyToSwitch state, see State Machine. Transmit
the CAN packet.

Step 3. Validate Response Packet

When you recieve the response packet as described in 0x01d (EEPROM Get Response), you should check
it to validate the write was performed correctly. The data we should recieve back per this example is
shown below.

35

0 7

FIELD: 0x02

8 15

DATA[0]: 0x00

16 23

DATA[1]: 0x00

24 31

DATA[2]: 0x00

32 39

DATA[3]: 0x3F

36

CHAPTER

TWO

MC0-500 HARDWARE DOCUMENTATION

2.1 Getting Started - Hardware
Welcome to the Steinmetz HW - MC0-500 documentation.

This section should help you prepare your new MC0-500 unit for Getting Started - Software.

2.1.1 Mounting
MC0-500 should be securely fastened to a rigid conductive surface. Use a flat surface, avoid any point
loading as it could damage the integrated cooling plate.

MC0-500 is designed to be mounted via M5x0.80 fasteners. Both threaded and through hole mounting
options are provided. The corresponding bolt pattern as viewed from the enclosure bottom is:

The inner bolt pattern features threaded qty-4 M5x0.80 holes. The outer rectangular pattern features
qty-4 ø5.3mm through holes. This allows for M5x0.80 bolts to be used in either orientation:

37

The use of a threadlocker is strongly recommended when using the threaded holes.

A torque of 5 N-m is recommended for all fasteners.

For additional mechanical information refer to Mechanical.

2.1.2 Quickstart Harnessing
The bare minimum required to run the unit is connecting all front-panel HV connections to the HV inputs
and motor outputs. On the LV side, the following connections must be made:

• LV ground (black wires with banana jack on provided harness)

• +12 Vin (red wire with banana jack on provided harness)

• CAN (green and yellow wires on provided harness)

• Resolver (group of 3 sets of twisted pairs EXC, COS, SIN on provided harness) For additional
information on pinout refer to Connectors.

38

Cooling should be attached and provided with 20 L/min of flow rate, and inlet temperatures should be
limited to 60 °C for maximum performance.

2.2 Cooling

2.2.1 Fittings
Two coolant ports are fitted to the rear of the MC0-500 enclosure. These ports are used for motor con-
troller cooling under normal operation.

The coolant ports and cooling geometry are symmetric and coolant flow is allowable in either direction.

However, due to internal heating characteristics it is recommended that when viewed from the rear the
right port is used as the inlet, and left port as the outlet.

It is recommended to use a semi-rigid tube with:

OD = 8 mm, ID = 6 mm

As-provided, MC0-500 ships with two straight barbed tube fittings. However these can be replaced with
any 1/4”-18 NPT threaded fitting.

The tubing should be rated for at least the maximum coolant pressure.

2.2.2 Coolant
The coolant plate is rated for a maximum inlet pressure of 310kPa (45 psi) relative to ambient. Pressures
in excess of the maximum may cause leakage of coolant and degraded performance.

Internal testing was performed with a coolant consisting of a 50/50 mix of water and glycol. The maxi-
mum recommended inlet temperature is 60C at full load operation.

2.2.3 Flow Requirements
The recommended flow rate to MC0-500 is 20 LPM.

2.3 Connectors
The front face of MC0-500 has all of the device’s connectors. When facing the front of the device, the
connectors are, from left to right:

• HV Minus

39

• LV Connector

• PHC

• PHB

• PHA

• Automotive Ethernet

• HV Positive

Name Location Connector

DC + Front left Amphenol PL00X-301
Phase C Centre left Amphenol PL00X-301
Phase B Centre Amphenol PL00X-301
Phase A Centre right Amphenol PL00X-301
DC - Front right Amphenol PL00X-301
Low Voltage IO Front left Hirose F13WBRB-20SD
Automotive Ethernet Front right TE 9-2367359-1

The I/O ports are as follows:

All connectors on MC0-500 have a IP67 seal or better when mated.

2.3.1 LV Connector
The LV connector on MC0-500 is the LF13WBRB-20SD from HIROSE. When mated, this connector
achieves an IPX7/IPX8 rating. The mating part is either LF13WBP-20P or LF13WBLP-20P; both come
in crimp and solder varieties and support shielding. The provided harness follows the diagram below,

40

which also includes pinout information for the LV connector. Refer to the HIROSE documentation for
additional information.

The pinout is as follows:

2.3.2 LV Connector Pinout

Pin Signal Description

1 +LV_IN Main LV supply input
2 CAN_L CAN Low
3 CAN_H CAN High
4 EXT_GPIO_0 External GPIO
5 EXT_GPIO_1 External GPIO
6 GND Ground
7 GND Ground
8 GND Ground
9 RESOLVER_EXC_P Resolver Excitation +
10 EXT_RTD_P External RTD Positive
11 EXT_GPIO_2 External GPIO
12 RESOLVER_SIN_N Resolver SIN-
13 GND Ground
14 RESOLVER_SIN_P Resolver SIN+
15 RESOLVER_COS_P Resolver COS+
16 EXT_RTD_N External RTD Negative
17 RESOLVER_EXC_N Resolver Excitation -
18 RESERVED Reserved
19 RESERVED Reserved
20 RESOLVER_COS_N Resolver COS-

ò Note

On engineering sample units, only 12V input is supported. Production models have support for 24-
48V+.

2.3.3 Ethernet Connector
The Ethernet connector on MC0-500 is 9-2367359-1 from TE. This connector and the associated hard-
ware in MC0-500 are configured for 100BASE-T. When mated, this connector achieves IP6K9K sealing.
At this time, the firmware interface is not implemented.

The recommended mating connector is 9-2367337, which is available in a variety of forms.

2.3.4 HV Connectors
MC0-500 has five high-voltage connectors, all of which are PL00X-301 connectors from Amphenol
Industrial. Each has its HVIL (High Voltage Interlock) daisy-chained internally, and a fault is detected
if any connector is improperly seated. To run MC0-500 at its maximum rated current, the mating part
should be crimped with 70 mm2 or larger wire. When mated, this connector achieves an IP67 seal.

The mating parts are PL18X-301, PL28X-301, PL10X-301, and PL20X-301.

41

2.3.5 Grounding
An M4x0.7x10 socket head cap screw is provided on the front of the enclosure, located above the low
voltage connector.

Provide a continuous low impedance connection between MC0-500’s grounding point, chassis ground,
and the motor’s ground.

2.4 Environmental Sealing

. Warning

Current delivered engineering samples of MC0-500 are not rated to IP67.

MC0-500 is designed for IP67 rating when all connectors are mated.

2.5 Mechanical
MC0-500 has dimensions of 43 mm x 298 mm x 381 mm (HxWxD), with a dry mass of 7.4 kg and
a displacement volume of 5.25 L. The front of the device features all the major electrical interfaces,
including five high-voltage connectors, a low-voltage connector, and an automotive Ethernet connector.
A threaded hole for chassis grounding is located next to the LV connector. Refer to Connectors for
additional information. Each corner of the unit contains mounting holes that accommodate fasteners
from both the top and bottom, using a combination of through and threaded holes.

At the rear of the unit are the cooling ports, which are preinstalled with 90° push-connect fittings. These
can be swapped for fittings of the customer’s choosing; refer to Cooling for additional information.

Download PDF

42

CHAPTER

THREE

MC0-250 HARDWARE DOCUMENTATION

3.1 MC0-250 Coming Soon

	Software Documentation
	Getting Started - Software
	Validate Interfaces
	Validate Internal Sensors
	Write Initial EEPROM values
	Calculating initial PI gains

	Validate Position Sensing
	Tune Resolver Offset

	State Machine
	CAN Protocol
	TX (Emitted from Motor Controller)
	Summary
	0x012 (Resolver)
	0x016 (State ID)
	0x01c (EEPROM Set Response)
	0x01d (EEPROM Get Response)
	0x020 (DQ Currents)
	0x021 (PWM Duty Cycles)
	0x022 (DQ PID Integral)
	0x025 (Electrical Angle)
	0x029 (Switching Misc Data)
	0x306 (GPIO State)
	0x310-0x31B (Temperature Data)
	0x31C (External RTD interface)
	0x320 (Current Sense Phase C)
	0x321 (Current Sense Phase B)
	0x322 (Current Sense Phase A)
	0x323 (Voltage Sense)
	0x324 (Current Sense ADC Debug)

	RX (Received by Motor Controller)
	Summary
	0x019 (Command Packet)
	0x01a (EEPROM Set Parameter)
	0x01b (EEPROM Get Parameter)

	EEPROM Configuration
	Fields
	Reading/Writing to EEPROM
	Using Provided Tool
	Reading
	Writing
	Dumping

	Over CAN
	Writing
	Step 1. Prepare CAN Packet
	Step 2. Transmit CAN Packet
	Step 3. Validate ACK Packet

	Reading.
	Step 1. Prepare CAN Packet
	Step 2. Transmit CAN Packet
	Step 3. Validate Response Packet

	MC0-500 Hardware Documentation
	Getting Started - Hardware
	Mounting
	Quickstart Harnessing

	Cooling
	Fittings
	Coolant
	Flow Requirements

	Connectors
	LV Connector
	LV Connector Pinout
	Ethernet Connector
	HV Connectors
	Grounding

	Environmental Sealing
	Mechanical

	MC0-250 Hardware Documentation
	MC0-250 Coming Soon

